

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Integration notes for version 4.0

Introduction…… 2

Command line version…………………………………………………………………………………………………… 3

Creating Alto Studio plug-ins…………………………………………………………………………………………. 6

Importer plug-ins……… 9

Exporter plug-ins……… 12

Tool plug-ins……….. 13

Exposing plug-in parameters…………………………………………………………………………………………. 18

Testing a plug-in………. 22

2

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Introduction

Alto Studio can import dialogue from various sources: from game middleware projects

(Audiokinetic’s Wwise, Firelight Technologies’ FMOD, CRI Middleware’s ADX2 or Tazman

Audio’s Fabric) to Excel sheets, or directly from folders of audio files with various hierarchies

and naming conventions.

However, it is sometimes necessary to interface with proprietary tools or dialogue

databases. For this reason, Alto Studio also includes a plug-in system. This plug-in system

makes it possible to write “Importer” plug-ins that allow the import of dialogue files,

“Exporter” plug-ins that can save the data in a proprietary format and “Tool” plug-ins that

can be used to extend the feature set of Alto Studio. Furthermore, the command line

version of Alto Studio can be run from a script while using the same .alto project files than

the GUI version.

This documentation focuses on these ways to integrate Alto with your current build pipeline

or tool chain.

Please note that the plug-in API and the options of the command line version are constantly

extended based on the requests from our clients. Therefore, don’t hesitate to contact us if

you need an extra feature.

3

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Command line version

You can integrate Alto Studio into your build pipeline by using the command line version,

which is located in the same folder than the Alto Studio tool. The name of the executable is

AltoCLI.exe. The command line version reads the same project or settings files than the GUI

version. This makes it easy to configure a project and keeps the calling syntax simple.

The available commands are described below:

Check: check the properties of the audio files in a folder and generates a report. It is similar

to the Quick Check feature from the tool and reads the same settings file. (.qcs).

AltoCLI -check -folder -settings -report
 -folder path of the folder with the audio files.
 -settings path of the settings file (.qcs).
 -report name of the analysis report to generate

 (valid extensions: .xls, .xlsx)

Analyze: analyze the files in an Alto Studio project and generate a report. This command is

the equivalent of the Analysis or Compare features from the tool and reads Alto Studio

project files.

AltoCLI -analyze -project -report
 -project path of the Alto Studio project to analyze.
 -report name of the analysis report to generate

 (valid extensions: .html, .pdf, .xls or .xml)

4

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Depending on the extension specified for the report’s name, Alto Studio will generate an

XML file, an Excel workbook, a PDF document, or HTML pages.

Correct: analyze and correct the files referenced by an Alto Studio project. This command is

the equivalent of the Correct or Conform features from the tool and reads Alto Studio

project files.

AltoCLI -correct -project [-report]
 -project path of the Alto Studio project to analyze and correct.
 -report name of the optional report to generate
 (valid extensions: .html, .pdf, .xls or .xml)

The report generation is optional, and the type of report created depends on the extension

specified for the report’s name.

Info: display information about an Alto Studio project, such as the reference and localized

languages and script information if any.

AltoCLI -info -project
 -project path of the Alto Studio project to analyze and correct.

Voices: display the list of synthesis voices installed that are compatible with Alto Studio.

AltoCLI -voices

The names can be used for the -voice parameter of the next command.

Synthesize: synthesize dialogue using Windows text-to-speech synthesizer.

AltoCLI -synthesize -text -voice -output [-basename] [-volume] [-rate]
 -text path of .txt file containing the dialogue lines.
 -voice name of the voice to use e.g., 'Hortense'
 -output path of the folder where to save the .wav files.
 -basename optional base name of the .wav files (default = name of the voice).
 -volume optional volume of the voice [1...100] (default = 100)
 -rate optional rate of the voice [-10...10] (default = 0)

Please note that for the moment it is only possible to run one Alto Studio process at any

given time. The figure below describes an example of integration.

5

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Do not hesitate to contact us if your integration requirements are not yet met by the

current version of AltoCLI. We can study the development of specific commands for your

project.

6

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Creating Alto Studio plug-ins

This section describes the steps required to create an Alto Studio plug-in. This is very easy

and can usually be done in a couple of hours.

1 – Create a new Visual C# project of type “Class Library”

Please note that Alto being a C# application, plug-ins must be written in C# or any other

managed language.

2 – Add a reference to AltoPlugIns

In the Solution Explorer, click on your project and select “Add Reference…” from the popup

menu. Select the “Browse” tab and browse to the location of the AltoPlugIns.dll file (i.e. the

root of the Alto Studio installation folder). This assembly contains the interfaces necessary

to write a plug-in for Alto. You can now add the required namespace:

using AltoPlugIns;

3 – Derive your plug-in from the right interface

Alto Studio supports three types of plug-ins, which are all derived from the base IPlugIn

interface. There are import plug-ins (IImporterPlugIn) that let you get dialogue files into

Alto Studio, export plug-ins (IExporterPlugIn) to save the data in the format of your choice

and tool plug-ins (IToolPlugIn) to add features to the software.

To create an SQL importer plug-in for example, derive your class from the IImporterPlugIn

interface.

7

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

4 – Add the plug-in attribute to your class

[AltoPluginAttribute(PlugInType.Importer)]

public class SQLPlugIn : ImporterPlugIn

{

}

This is how the Alto Studio plug-in manager detects that a DLL is an Alto-compatible plug-in.

The attribute takes only one parameter, which is the type of the plug-in:

PlugInType.Importer, PlugInType.Exporter or PlugInType.Tool.

5 – Implement the IPlugIn interface

All plug-in interfaces derive from the base IPlugIn interface that any Alto-compatible plug-

in must implement.

public interface IPlugIn

{

 string Name { get; }

 string Description { get; }

 string Author { get; }

 Guid GUID { get; }

 Version Version { get; }

 PlugInType Type { get; }

 Image Logo { get; }
 bool HasEditor { get; }

 bool EditParameters();

 bool ValidateParameters(out string errorMessage);

}

Name, Description, Author

These properties are strings that help you describe your plug-in. They will be displayed by

the user interface of Alto Studio. The name does not have to be the same name than the

plug-in assembly itself.

GUID

A unique identifier must be assigned the plug-in. You can create a new GUID by selecting the

Tools->Create GUID menu command in Visual Studio. Do not copy an existing GUID! In the

case of importer plug-ins, the GUID and the version of the plug-in will be saved in the Alto

Studio project if the dialogue lines were imported through that plug-in.

8

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Version

This property will allow you to track several versions of a plug-in, which is especially useful

when loading or saving data. The version of a plug-in is always displayed by Alto Studio

when using it.

Type

The type of the plug-in is again PlugInType.Importer, PlugInType.Exporter or

PlugInType.Tool.

Logo

The plug-in logo: if null, the Alto Studio’s default plug-in logo will be displayed by the GUI.

HasEditor

The HasEditor property should be set to true if you are planning on providing your own GUI

to edit the parameters of the plug-in. In this case, the EditParameters() method will be

called. If HasEditor is set to false, a default editor will be generated by Alto Studio based on

the parameter definitions (i.e. using reflection).

EditParameters

Typically, this method should open a form and allow the editing of the parameters. It should

return true if the parameters have been changed and false otherwise.

ValidateParameters

The ValidateParameters method is called when the OK button of the plug-in configuration

form is pressed, before the form is closed. It is the responsibility of the plug-in to make sure

that the parameter values are valid. If a parameter value is invalid, the method should

return false and send a description of the problem in errorMessage. In that case, the

message will be displayed by Alto Studio and the form will not be closed.

9

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Importer plug-ins

This section describes the methods that must be implemented to create an importer plug-in

and comply with the IImporterPlugIn interface. The CSV Importer is an example of a very

simple importer plug-in. Examining its source code is a great starting point to learn how to

build importer plug-ins.

The IImporterPlugIn interface is defined like this:

public interface IImporterPlugIn : IPlugIn

{

 string ProjectFilterString { get; }

 bool IsValidProjectFile(string projectPath);

 bool Initialize(string projectPath);

 void Terminate();

 List<string> GetLanguages();

 string GetReferenceLanguage();

 List<string> GetReferencePaths();

 string GetLocalizedPath(string refFilePath, string language);

 List<string> GetLocalizedFiles(string language);

 void WriteSpecific(ref XmlTextWriter writer);

 void ReadSpecific(ref XmlNode parentNode);

}

10

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

ProjectFilterString

This property must return filter string to use in an open file dialog in order to load projects
for the game audio middleware / tool / database we target.

IsValidProjectFile

This method is responsible for checking the validity of the file passed. It should return true is

the file passed is in the expected format, and false otherwise.

Initialize

This method is only called once, when the plug-in is loaded (when Alto Studio is started).

Any consequent initialization or resources allocation should be done here.

Terminate

This method is only called once, when the plug-in is released (when Alto Studio is closed).

Any resources used by the plug-in should be freed here.

GetLanguages

This method must return the list of all the available languages in the project (including the

reference language). There are no rules about the names of the languages, however they

must be unique.

GetReferenceLanguage

This method must return the reference language. This is the language against which all

comparisons will be done. The reference language must be part of the languages retuned by

GetLanguages.

GetReferencePaths

This method must return the list of all the reference files in the project (i.e. all the files

which are in the reference language).

GetLocalizedPath

This method must return the path of a localized file based on the path of the reference file

and the name of a localization language. Unlike the other methods, GetLocalizedPath can

be called a lot. During analysis, it is called for each file of the reference language times the

number of localized languages which are being analysed. It is also called by various Alto

Studio tools or GUI elements. If your projects handle large numbers of files, it is

recommended to ensure that this method is optimized.

11

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

GetLocalizedFiles

This method must return the list of the paths of all localized files in a specific language in the

project. Note that this may also be files that are present in a localized folder, have the right

prefix and/or suffix, but do not have a corresponding reference file. This function is indeed

used by the Comparison feature to detect extra files. If you do not intend to look for extra

files, you can simply return an empty list.

WriteSpecific, ReadSpecific

Each importer plug-in has a few built-in controls by default: the first one is to browse to the

project, the second one is the list of languages available in the project and the last one is a

combo box to select the reference language. For example, the CSV Importer plug-in

depicted above does not have any other parameters so that is all that is displayed and saved.

However, if more parameters are required, then Alto Studio needs to be able to save them

in the project file (.alto) and read them again. This is achieved by using the WriteSpecific

and ReadSpecific methods. These methods are called when an Alto Studio project is saved

and loaded respectively.

Alto Studio saves its project files in XML format therefore the WriteSpecific method is

passed a reference to a XmlTextWriter object and the ReadSpecific method is passed a

reference to the root node (of type XmlNode). A very simple example of implementation

would look like this:

void WriteSpecific(ref XmlTextWriter writer)

{

 writer.WriteStartElement("MyPlugInSpecific");

 writer.WriteStartElement("MaxNumberOfFiles");

 writer.WriteAttributeString("value", m_maxNumberOfFiles.ToString());

 writer.WriteEndElement();

 writer.WriteEndElement();

}

void ReadSpecific(ref XmlNode rootNode)

{

 XmlNode myPlugInNode = rootNode.SelectSingleNode(".//MyPlugInSpecific");

 XmlNode infoNode = myPlugInNode.SelectSingleNode(".//MaxNumberOfFiles");

 m_maxNumberOfFiles = Convert.ToUInt32(infoNode.Attributes["value"].Value);

}

12

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Exporter plug-ins

This section describes the methods that must be implemented to create an exporter plug-in

and comply with the IExporterPlugIn interface. The XML Exporter is an example of a very

simple exporter plug-in. Examining its source code is a great starting point to learn how to

build exporter plug-ins.

 public interface IExporterPlugIn : IPlugIn
 {
 string ProjectFilterString { get; }
 bool IsValidProjectFile(string projectPath);

 bool Initialize(string projectPath);
 void Terminate();

 bool Export(string refLanguage,

List<string> locLanguages,Dictionary<string,List<string>> files);

 void WriteSpecific(ref XmlTextWriter writer);
 void ReadSpecific(ref XmlNode parentNode);
 }

As you can see, the IExporterPlugIn interface is very similar to the IImporterPlugIn

interface.

It also contains a ProjectFilterString property as well as a IsValidProjectFile method.

There is also an Initialize and a Terminate method, which can be used to create a file and

close it respectively.

The difference comes from the Export method. This method is used by Alto Studio to pass

all the dialogue files information to the exporter plug-in, so that it can write it or send it as

needed.

The Export method has 3 parameters:

- The first one is a string containing the name of the reference language.

- The second parameter is a list of strings, each of them containing the name of one of

the localized languages.

- Finally, the third parameter is a dictionary whose key is the path of an audio file in

the reference language, and whose value is a list of string containing the paths of the

corresponding audio files in the different localized languages.

Note that the paths of the localized files follow the order of the languages in the list

of the second parameter.

13

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Tool plug-ins

This section describes the methods that must be implemented to create a tool plug-in and

comply with the IToolPlugIn interface. The Silence Trimmer is an example of tool plug-in. It

removes silence at the beginning and at the end of dialogue files. Examining its source code

is a great starting point to learn how to build tool plug-ins. In addition, the Silence Trimmer

plug-in takes advantage of the automatic GUI generation feature of Alto Studio by using C#

attributes for its parameters (see next section).

The IToolPlugIn interface is defined like this:

public interface IToolPlugIn : IPlugIn

{

 bool RequiresProject { get; }

 bool Initialize();

 void Terminate();

 bool Execute(AltoServerCommands commands, out bool bDialogueModified);

}

RequiresProject

This property describes if the tool plug-in requires an Alto project to be loaded to work. For

example, The Silence Trimmer plug-in allows you to specify an input folder from which the

files will be processed. It is therefore independent from the Alto project. If you start Alto

and no project is loaded, you will still be able to access the Silence Trimmer tool. However, if

this flag is set to true for a plug-in, the corresponding entry in the tool menu will be greyed

until a project is loaded.

14

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Initialize

This method is only called once, when the plug-in is loaded (when Alto Studio is started).

Any consequential initialization or resources allocation should be done here.

Terminate

This method is only called once, when the plug-in is released (when Alto Studio is closed).

Any resources used by the plug-in should be freed here.

Execute

This method does the actual work when the OK button is pressed in the tool’s window. It

receives a set of delegate functions (see the description of AltoServerCommands below) that

allow the plug-in to use Alto Studio internal functions and to access the current project’s

data. The method must return true if the processing was successfully completed or false

otherwise. In addition, bDialogueModified must be set to true by the plug-in if it changes

the data of the dialogue files in the project and therefore the analysis must be redone. If it is

set to true, Alto Studio will display a message to warn the user.

The AltoServerCommands class provides methods to get information about the current
project and to trigger functions in Alto Studio. In future versions, we may also give access to
the current report and analysis settings. Please let us know what your company needs and
we will do our best to add it.

public class AltoServerCommands

{

 public StartPlayback StartPlayback;

 public StopPlayback StopPlayback;

 public GetSampleData GetSampleData;

 public UpdateSampleData UpdateSampleData;

 public WriteSampleData WriteSampleData;

 public GetReferenceLanguage GetReferenceLanguage;

 public GetLanguages GetLanguages;

 public GetReferenceFiles GetReferenceFiles;

 public GetLocalizedFile GetLocalizedFile;

 public GetMetaTags GetMetaTags;
 public SetMetaTags SetMetaTags;
 public GetScriptInformation GetScriptInformation;
 public SetScriptInformation SetScriptInformation;

 public CalculateLKFS CalculateLKFS;
 public CalculateLRA CalculateLRA
 public CalculatedBTP CalculatedBTP;
 public CalculateRMS CalculateRMS;
 public GetSpectrum GetSpectrum;
 public GetSpectralBands GetSpectralBands;

15

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

 public GetPitchEnvelope GetPitchEnvelope;
 public GetAmplitudeEnvelope GetAmplitudeEnvelope;
 public CorrectLKFS CorrectLKFS;
}

The definitions of these delegates are as follows:

delegate void PlaybackFinished();

delegate bool StartPlayback(string path,PlaybackFinished callback);

delegate void StopPlayback();

delegate float[] GetSampleData(string path,out UInt16 bitDepth, out float

sampleRate,out UInt16 channels);

delegate bool UpdateSampleData(string path,float[] data, UInt16 bitDepth, float

sampleRate, UInt16 channels);

delegate bool WriteSampleData(string path, float[] data, UInt16 bitDepth, float

sampleRate, UInt16 channels);

delegate string GetReferenceLanguage();

delegate List<string> GetLanguages();

delegate List<string> GetReferenceFiles();

delegate string GetLocalizedFile(string referencePath, string language);

delegate List<string> GetMetaTags(string path);
delegate bool SetMetaTags(string path, List<string> metaTags);
delegate bool GetScriptInformation(string path, out string text, out string
character, out string actor);
delegate bool SetScriptInformation(string path, string text, string character,

string actor);

public delegate float CalculateLKFS(float[] data, float sampleRate, uint channels,
ChannelMapping channelMapping, out float[] momentaryLoudness);
public delegate float CalculateLRA(float[] data, float sampleRate, uint channels,
ChannelMapping channelMapping, out float[] shortTermLoudness);
public delegate float CalculatedBTP(float[] data, float sampleRate, uint channels,
ChannelMapping channelMapping);
public delegate float CalculateRMS(float[] data, uint channels, ChannelMapping
channelMapping);
public delegate float[] GetSpectrum(float[] data);
public delegate float[] GetSpectralBands(float[] data,float sampleRate, out float[]
centerFreq,out float[] bandwidth);
public delegate float[] GetPitchEnvelope(float[] data,float sampleRate, float
blockDuration, float minPitch, float maxPitch, float noiseThreshold);
public delegate float[] GetAmplitudeEnvelope(float[] data,float sampleRate);
public delegate void CorrectLKFS(ref float[] data,float samplerate,uint channels,float
targetLKFS, out bool clipping);

16

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Playback commands

StartPlayback

This command uses Alto’s audio engine to start the playback of a file. The plug-in can

receive a notification when the playback is finished if a callback function of type

PlaybackFinished was passed as an argument.

StopPlayback

This command stops the playback of a file started with StartPlayback.

Audio files commands

GetSampleData

This command gets the sample data of an audio file (as well as its number of channels and

its sample rate).

UpdateSampleData

This command updates the sample data of an audio file (as well as number of channels and

sample rate).

WriteSampleData

This command writes a new audio file given its sample data, bit depth, number of channels

and sample rate.

Languages and file paths commands

GetReferenceLanguage

This command gets the name of the reference language of the project.

GetLanguages

This command gets the names of all the languages in the project (including the reference

language).

GetReferenceFiles

This command gets all the paths of the reference files in the project.

GetLocalizedFile

This command gets the path of a localized file given the path of a reference file and a

language.

17

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

File information commands

These commands allow for the acquisition and update of information associated with audio

files. Any update is done at the project level (in case your plug-in needs to process this type

of information). However, it is not saved in the original files or the project itself.

GetMetaTags

This command gets the meta tags associated with an audio file.

SetMetaTags

This command updates the meta tags associated with an audio file.

GetScriptInformation

This command gets the script data (text of the dialog, character’s name, voice actor) that is

associated with an audio file.

SetScriptInformation

This command updates the script data (text of the dialog, character’s name, voice actor)

that is associated with an audio file.

Analysis and correction commands

Some of these commands require information about the channels mapping, which is passed

as a value from the enum below:

public enum ChannelMapping
{
 DTS, // L R Ls Rs C LFE
 ITU, // L R C LFE LS Rs
 Film, // L C R Ls Rs LFE
}

CalculateLKFS

This command calculates the integrated - or program - loudness (LKFS) following the EBU R-

128 specifications. It also returns the momentary loudness. If the file is shorter than 400 ms

it is extended to 400 ms and the original signal is looped. This ensures that we can calculate

the loudness even for short signals while following the specifications.

CalculateLRA
This command calculates the loudness range (LRA) following the EBU R-128 specifications. It

also returns the short-term loudness. If the file is shorter than 3 seconds it is extended to 3

18

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

seconds and the original signal is looped. This ensures that we can calculate the loudness

range even for short signals while following the specifications.

CalculatedBTP
This command calculates the true peak value (dBTP) following the EBU R-128 specifications.

CalculateRMS
This command calculates the Root Mean Square (RMS) over the whole signal.

GetSpectrum
This command calculates the spectrum of a mono signal and returns the magnitudes. It
essentially performs a Fast Fourier Transform (FFT). Therefore, an error will occur if the size
of the signal passed is not a power of two (you can pass the signal with zeroes if needed).

GetSpectralBands
This command calculates the loudness in equidistant spectral bands (ERB) of a mono signal.
The spectrum is divided in 31 spectral bands.

GetPitchEnvelope
This command extracts the pitch envelope of a mono signal. The signal is divided in blocks of
20 ms and an array is returned with a pitch estimation for each block. If the pitch could not
be estimated or the signal was silent in a block, a value of 0.0f is returned for that block.

GetAmplitudeEnvelope;
This command extracts the amplitude envelope of a mono signal. It returns an array of the
same size than the original signal containing the envelope.

CorrectLKFS;
This command calculates the current loudness of a signal and corrects it if the value is
different from the specified LKFS target. A flag is also returned that indicates if clipping
occurred during the correction.

19

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Exposing plug-in parameters

Alto Studio will interpret any property marked with an attribute derived from

PlugInParameterAttribute as a plug-in parameter. If the plug-in does not provide a

graphical user interface, Alto Studio will use these parameters to create a settings window

for the plug-in. Currently, five types of plug-in parameter attributes are available, depending

on the type of the parameter.

PlugInNumberParameter

This attribute is used to specify any parameter whose value is a number (it can be integer or

floating point).

public PlugInNumberParameter(string name, string description, string group, UInt16

line, string unit, float def, float min, float max,bool bInteger)

The name, description and unit are self-explanatory. They will be used by the tool to display

the parameter. Most importantly, the default (def), minimum (min) and maximum (max)

values of the parameter are to be specified. A boolean (bInteger) specifies if the parameter

is an integer or not. The group name is used by Alto Studio to create headers under which

parameters from the same group will be located. The line number is used to force several

control on a same line.

Here is for example the parameter definition for a fade-in duration (floating point value):

private float m_fadeIn = 0.10f;

[PlugInNumberParameter("Fade in", "Duration of the fade in", "Audio Parameters", 1,

"s", 0.1f, 0.0f, 100000.0f, false)]

public float FadeIn

{

 set { m_fadeIn = value; }

 get { return m_fadeIn; }

}

20

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

If a GUI is automatically generated for your plug-in, a NumericUpDown control will be

created for this type of parameter.

PlugInEnumParameter

This attribute is used to specify a parameter which can take discrete values among a set.

public PlugInEnumParameter(string name, string description, string group, UInt16

line, string unit, Int16 def, string[] valueNames)

As for the number parameter attribute, the name, description and unit are required, the

group name and line number as well. valueNames is an array of strings that contains all the

possible values of the parameter in textual format. def is the index of the default value in

that array.

Here is the parameter definition for a fade-in curve:

public enum LevelCurve

{

Linear,

 Exponential,

 HalfSine,

}

private LevelCurve m_curveIn = LevelCurve.Linear;

[PlugInEnumParameter("Fade in curve", "Level curve to use to do the fade in.",

"Audio Parameters", 2, "", 1, new string[] { "Linear","Exponential","HalfSine" })]

public LevelCurve FadeInCurve

{

set { m_curveIn = value; }

get { return m_curveIn; }

}

If a GUI is automatically generated for your plug-in, a ComboBox control will be created for

this type of parameter.

21

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

PlugInStringParameter

This attribute is used to specify a parameter whose value is a string.

public PlugInStringParameter(string name, string description, string group, UInt16

line, string def,StringType stringType)

In addition to the usual name, description, group and line of the parameter - no unit

needed this time – the type of the string (stringType) as well as its default value (def) must

be specified.

The string type is defined like this:

public enum StringType

 {

 String,

 FileReadPath,

 FileWritePath,

 FolderPath,

 }

String is a regular string: it can be the name of an object, a comment, a copyright etc…

FileReadPath, FileWritePath, and FolderPath all correspond to a path. If a GUI is to be

automatically generated for the plug-in, these string parameters will have an extra browse

button (“…”) in addition to the regular TextBox, therefore allowing the selection of a file or a

folder. The difference between FileReadPath and FileWritePath is that the first one

requires the selection of an existing path (similar to when you want to read a file) whereas

the second one accepts a new path (similar to when you want to write a file).

Here is an example of usage of this attribute:

private string m_file = "";

[PlugInStringParameter("File", "File which will receive all the stripped

metadata.", "Export",1, "", StringType.FileWritePath)]

public string File

{

set { m_file = value; }

get { return m_file; }

}

22

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

PlugInBooleanParameter

This attribute corresponds to a boolean value and is represented by a checkbox when a GUI

is automatically created by Alto Studio.

public PlugInBooleanParameter(string name, string description, string group,

UInt16 line, bool def)

Its only specific parameter is the default boolean value. Here is an example of definition:

bool m_bOpenEditor = false;

[PlugInBooleanParameter("Open Editor", "Open the project in editor after export",

"Export", 2, false)]

public bool OpenEditor

{

set { m_bOpenEditor = value; }

get { return m_bOpenEditor; }

}

PlugInLanguagesParameter

This attribute is used to specify a parameter whose value is a list of strings. In the GUI, it is

displayed as a checked listbox populated with the names of the languages in the projects.

The user can include or exclude languages by clicking on the checkboxes. The list of string

will then contain the names of the languages selected.

public PlugInLanguagesParameter(string name, string description, string group, UInt16
line, bool bIncludeReference)

In addition to the usual name, description, group and line of the parameter, the

bIncludeReference boolean determines if the reference language must also be included in

the languages displayed by the listbox.

Here is an example of definition:

List<string> m_selectedLanguages = new List<string>();

[PlugInLanguagesParameter("Languages", "Select the languages you want to check",
"Languages", 0, false)]
public List<string> SelectedLanguages
{

set { m_selectedLanguages = value; }
 get { return m_selectedLanguages; }
}

23

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Testing a plug-in

To test your plug-in in Alto Studio, simply copy the plug-in DLL in the folder where the Alto

Studio executable is located. If it has been marked correctly with the AltoPluginAttribute,

it will be automatically recognized and loaded when Alto Studio starts.

If you didn’t specify an editor for it but marked your parameters appropriately, a GUI will be

automatically generated for it when you call it.

Importer plug-ins can be accessed through the “New project” command. They will appear in

the list of project types you can create. The name of the plug-in, followed by its description

appears in the window. If you select it and press OK the window of the importer plug-in will

be displayed.

Similarly, all the exporter plug-ins and the tool plug-ins found in Alto Studio’s root folder are

added to the “Export Project…” window and to the “Tools” menu respectively. When the

tool command in the “Tools plug-ins” submenu is selected, the user interface of the plug-in

(either automatically generated or customized) is displayed.

24

Koshimura building, 3-5-8 Yoneyama

Chuo-ku, 950-0916 Niigata City, Japan
www.tsugi-studio.com

Please note that all plug-ins are detected and loaded by the Alto Studio plug-in manager

when the software is started. A plug-in cannot be hot-swapped, or added to Alto Studio

while it is already running. You will have to restart Alto Studio for the new plug-in to

become available.

